読者です 読者をやめる 読者になる 読者になる

a record of inner life

やったことや考えたこと・本・論文・音楽の備忘録。 特に環境科学・生態毒性に関して。

論文のメモ: RINは 全ての生物種のRNA分解指標にはできない

動物組織から抽出したRNAの分解度合は、電気泳動によって評価するのが普通です。ヒトなどの場合は、バイオアナライザーという装置で泳動して RIN (RNA Integrity Number; Schroeder et al., 2006) なる指標で分解度を評価します。RINの考え方は、RNAの中で大部分を占めるrRNAの存在比(分解度合)などに基づいて、RNA全体の分解度を推定しようというものです。

ただしRINは、ヒトや哺乳類のRNAを対象とした指標であり、昆虫や甲殻類など一部の生物種には適用できない場合があります(例えば下のWinnebeck et al., 2010)。昆虫や甲殻類の28S rRNAはスプライシング後に"gap deletion"なる現象によって切れ目を入れられて、RNA抽出や泳動前の熱変性の際に2つの断片に分かれてしまいます。そのため本当はRNAが分解していなくとも、28S rRNAが見られないために分解されたとみなされてしまうのです。

 

 

「RIN: RNA非分解度の指標

Schroeder A., Mueller O., Stocker S., Salowsky R., Leiber M., Gassmann M., Lightfoot S., Menzel W., Granzow M., and Ragg T., 2006, The RIN: an RNA integrity number for assigning integrity values to RNA measurements, BMC Mol. Biol., 7 (1), 3.

RNA分解度の評価としてRINを提案した論文。18S rRNAと28S rRNAの量比という指標では分解度を正確に表現できていないという問題を克服するために、RINが開発されたようです。

主にヒト・マウ・ラットのRNAサンプル1208個の波形データを専門家が1~10の分解レベルにカテゴリー分けし、そのカテゴリー分けはどのような特徴量(例:28Sと18Sのピーク高さ比)によってなされているのかをニューラルネットワークを用いて計算しています。ちなみにRINは数字が小さいほど(すなわち1に近いほど)、RNAが分解していることを示します。

ニューラルネットワークの詳細は分かりませんが(というかもはや読んでない)、カテゴリー分けに対する寄与の大きかった特徴量は、順にtotal RNA 比・28Sピーク高さ・28S 面積・fast regionに対する18Sと28S の面積比だそうです。total RNA比とは全RNAに対する18S・28S rRNAの面積比であり、fast regionとは5S と18Sに挟まれた領域のことです。このあたりの特徴量の説明は、Wikipediaにも簡単に書いてありますね。 

 

「なぜ昆虫のRNAは分解して見えるのか?

Winnebeck E.C., Millar C.D., and Warman G.R., 2010, Why does insect RNA look degraded?, J. Insect Sci., 10 (159), 1-7.

ミツバチのRNAでRINを測ろうとして、プロトコル通りにRNAを加熱してBioanalyzerに流すと28S rRNAが見えない。RNAが分解したのかと思いきや、そうではない。gap deletion (hidden break) のために28S rRNAが断裂しただけである。なので、RNAは加熱しないで流す。そうすると28S rRNAのピークが確認できるよ、気をつけよう。そんな論文です。 

28S rRNAが断裂するメカニズムについても、既往文献を引用して、まとめられています。

 

節足動物における"分解したRNA"プロファイル

McCarthy S.D., Dugon M.M., and Power A.M., 2015, ‘Degraded’RNA profiles in Arthropoda and beyond, Peer J, 3, e1436.

クモやムカデ・フジツボ類も、28S rRNAは加熱すると分裂するという話。加熱しないで泳動すれば28S rRNAピークも見られると、Winnebeck et al., 2010, J. Insect Sci.と同じようなことを書いています。

 

ただ自分の経験によると、これはヨコエビには適用できないっぽいです。ヨコエビRNAは、加熱しなくても28S rRNA分裂が生じます。同様の報告はVidal-Dorsch et al. (2016) もしています*1

例えば下の図は、あるヨコエビのtotal RNA泳動図です。Bioanalyzerでの泳動前に加熱してませんが、28S rRNAピークは小さくなってしまいます。

f:id:Kyoshiro1225:20170425105708j:plain

 

なぜこのように生物種によって28S rRNAの切れやすさに違いが生じるのでしょうか。たぶんですが、28S rRNAの配列が異なると二次構造も変化してhidden breakの水素結合部分の強さが変わるからでしょう。

 非モデル生物を扱うときは、本当に予想外のことが生じますね。

 

*1:著者のDorisさんにメールしたら、Bioanalyzer前に加熱はしてないとのことでした。

生物サンプルの送付依頼

1月ほど前、某国の研究者から遺伝子解析したいので生物サンプル送ってくれないか、という問い合わせメールが来ました。

良いよ~、でもCOI領域なら既に300 bpくらい既に読んであるので配列データ送るね、と返信したところ、1月ほど音沙汰なし。

自分とは異なる研究分野なので、連携出来たら面白いかと思ったけど、まあいっか。こちらからアクションを起こしてまで連携しようという気はないです。

論文のメモ: 化学物質曝露と甲殻類の脱皮

この記事とほぼ同じ内容。

どうも、ZnやCdが脱皮を阻害する発端のメカニズムはCa摂取阻害で説明できそう。Caは殻の材料でもあるし、またCaは脱皮を制御するecdysteroidホルモンをコントロールしているので。

 

 

「総説:異物曝露が甲殻類の脱皮に与える影響

Zou E., 2005, Impacts of Xenobiotics on Crustacean Molting: The Invisible Endocrine Disruption, Integ. Comp. Biol., 45 (1), 33-38.

主にPCBなどの有機物による脱皮阻害についての総説。曝露によってキチン分解にかかわるChitobiaseの活性が低下する原因は、Y器官のecdysteroid receptor EcRが攪乱されるためではないかとのこと(Chitobiaseはecdysteroidによって制御されている)。

 

「総説:甲殻類の脱皮の制御

Chang E.S. and Mykles D.L., 2011, Regulation of crustacean molting: a review and our perspectives, General Comp. Endocrinol., 172 (3), 323-330.

MIH(molt-inhibiting hormone)がエクジステロイド合成を制御するシグナル経路のFig. 2が良い感じ。Caがキー。

 

「総説:甲殻類Y器官におけるEcdysteroidホルモン合成のシグナル経路

Spaziani E., Mattson M.P., Wang W.L., and McDougall H.E., 1999, Signaling pathways for ecdysteroid hormone synthesis in crustacean Y-organs, Amer. Zool., 39 (3), 496-512.

上のFIg.2はMIHに絞ってますが、こちらのFig.9はecdysteroid合成経路も描かれています。分かりやすい。

H先生の最終講義

先日H先生の最終講義があって、見てきました。先生の半生記とか、学科の歴史とか、研究に対する哲学とかが聞けるかと思いきや、本当にふつうの講義みたいなのをしていました…。いちおう近年の研究の象徴的な話だったようですが、ちょっと残念でした。まあ、H先生らしいのかも。

続きを読む

映画「La La Land」

公開初日に観ました。プレミアムフライデーで。

 

まあ面白かったです。でも前評判ほどではなかったかな。 

夢追い人の話。ストーリーはありきたりですが、二人がケンカしてからは、けっこう感情移入しちゃいました。ラストの切ない感じは良かったです。もし、元さやに戻るみたいな流れになったらブチ切れてました。

ミュージカルは、その世界に入り込めていないとキツい時がありますね。冒頭、渋滞で止まっている車からみんな出てきて踊りだすんですが、トラックの荷台を開けたら黒人が太鼓たたきながら踊りに参加してきたシーンは思わず笑ってしまいました。荷台で何やってたんだ。あと、プラネタリウムで浮き上がるシーンも。

軽くdisられてたJohn Legendのバンド。普通にカッコ良かったです。

 

Ost: La La Land

Ost: La La Land

 

 

論文のメモ: 金属曝露とヨコエビの繁殖阻害

前回にひき続き、甲殻類への金属毒性のメカニズム勉強中。

 

ヨコエビの生殖学と内分泌制御についての総説

Hyne R.V., 2011, Review of the reproductive biology of amphipods and their endocrine regulation: identification of mechanistic pathways for reproductive toxicants, Environ. Toxicol. Chem., 30 (12), 2647-2657.

曝露によって繁殖能が低下する原因は、ざっくり言うと脱皮の阻害と卵形成(vitellogenesis)の2つ。でも別にこの2つは独立の現象でもなさそうです。例えば、Y器官から分泌されるエクジステロイドは、脱皮もVitellogenin合成も促進するみたい。繁殖能の阻害の報告が多いのはやはり有機ですが、金属類でもCdによる阻害はヨコエビで報告があるとのこと。

総説の主題ではないですが、ω-3脂肪酸が不足すると産仔数が減少するんじゃないかという話は面白そう(→Hyne et al., 2009; Sundelin et al., 2008)。

 

「金属汚染底質に曝露されたヨコエビの産仔数が減少しても二次卵黄形成は継続される

Hyne R.V., Mann R.M., Dillon C.T., de Jonge M.D., Paterson D., and Howard D.L., 2013, Secondary vitellogenesis persists despite disrupted fecundity in amphipods maintained on metal-contaminated sediment: X-ray fluorescence assessment of oocyte metal content, Ecotoxicol. Environ. Safety, 93, 31-38.

Pbなど金属曝露による繁殖阻害のメカニズムは、亜鉛を含むタンパクであるVitellogenin(VTG)への亜鉛の結合を他の金属が阻止するからではないか、という仮説を検証した論文。亜鉛・銅・カドミウム・鉛をスパイクした底質にヨコエビを曝露させて、卵巣における金属の分布を蛍光X線分析で調べています。既に抱卵したメスと成熟したオスを曝露させてます。

結果、卵母細胞に亜鉛は分布しているし、control系と曝露系で大きな違いはなさそうで、secondary vitellogenesis(別の場所で作られたvitellogeninが卵巣の卵母細胞に取り込まれること?)は汚染系でも進んでいるというものでした。仮説は否定されたということで、他に有りうる繁殖阻害のメカニズムは、脱皮サイクルの遅れやCa摂取阻害(Muyssen et al., 2006)などではないかとの考察。

 

 

 「水生無脊椎動物における金属の毒性・摂取・蓄積―甲殻類における亜鉛

Rainbow P.S. and Luoma S.N., 2011, Metal toxicity, uptake and bioaccumulation in aquatic invertebrates—modelling zinc in crustaceans, Aquatic Toxicol., 105 (3), 455-465.

以前読んだ総説ヨコエビOrchestia gammarellusの話。

中国でヨコエビ飼育法の特許がとられてる

いやはや、びっくりした。

ネットサーフィンしてたら、ニホンドロソコエビ(Grandidierella japonica)の飼育法の特許を見つけました。ちゃんと読めてないけど、温度は20~26℃、塩分は10~26にするとか、餌に藻類をあげるとか、そんな感じのことが書かれてます。特許ってこんな分野・内容でもとれるんですね。


この人たち、1998年からこの種に関する論文を出してるみたいですが、全部中国語で、しかもネット上で入手できないという…。なんで英語で書かないのか。

SciRevに投稿してみた

ここで知ったSciRevというサイトに投稿してみました。

論文を投稿した時の査読にどれだけ時間がかかったか、などの経験談をまとめているサイトです。サンプル数が少ないので、あまり信頼度は高くないです。例えば環境系だと、経験談の最も多い雑誌(Agronomy for Sustainable Development)でも21個の投稿で、次点は9個。たいていの雑誌は1~3個です。まあでも、眺めてるだけで面白いです。 

投稿してしばらく経ってからサイトに反映されます。その間、口コミ内容のチェックを一応しているみたいですね。

 

Editorから理不尽な扱いを受けた時は、ここでネガキャンして憂さ晴らししてやろうかな。

 

論文のメモ: 甲殻類の脱皮と金属曝露

「オオミジンコのecotoxicogenomicsによって金属毒性のメカニズムが推察できる

Poynton H.C., Varshavsky J.R., Chang B., Cavigiolio G., Chan S., Holman P.S., Loguinov A.V., Bauer D.J., Komachi K., Theil E.C., Perkins E.J., Hughes O., and Vulpe C.D., 2007, Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity, Environ. Sci. Technol., 41 (3), 1044-1050.

オオミジンコをCd・Cu・Zn溶液にそれぞれ1/10 LC50で曝露させて、遺伝子発現をマイクロアレイで調べた論文。昔よく読んだ論文ですが、またキチンに関する箇所を読み直し。

キチナーゼhomologous geneが、Zn曝露の時だけ発現が減少してます。キチナーゼの酵素活性も確かに、同濃度のCdとCuよりZnによって、より活性が阻害されてます。キチナーゼが阻害されると、脱皮が上手くできなくなるので最終的には繁殖能も阻害される(からキチナーゼ阻害は良いマーカーになる?)という議論も。

甲殻類の脱皮はホルモンによって制御されていて、有機物曝露によってキチナーゼ活性が阻害される報告はいくつかあったけれども、金属によってキチナーゼが阻害されたというのはこの論文が初めてじゃないか、とのこと。

  

「オオミジンコの遺伝子発現プロファイリング:NOTEL

Poynton H.C., Loguinov A.V., Varshavsky J.R., Chan S., Perkins E.J., and Vulpe C.D., 2008, Gene expression profiling in Daphnia magna part I: concentration-dependent profiles provide support for the no observed transcriptional effect level, Environ. Sci. Technol., 42(16), 6250-6256.

上記論文の続き。同じくCd・Cu・Zn溶液に曝露させてマイクロアレイ解析をしてますが、1/10 LC50に加えて1/10 EC50とNOECも追加。濃度は1/10 EC50 < 1/10 LC50 < NOEC。

定量PCRでキチナーゼの発現変動を確認してますが(Table S4)、別に亜鉛特異的ではなく、銅曝露でも発現は減少してます。この結果だけ見ると、上の論文のキチナーゼ活性の部分はう~んという感じ。ただこの論文では、いくつかあるキチナーゼhomologのうち一つしか試験してないので、あくまで酵素活性は亜鉛に特異的なんだという可能性はまだあるかも。

Cuticle proteinもCu・Zn溶液によって発現低下しています(Table S3)。

 

 

「転写物プロファイリングによるヨコエビの有害物質応答メカニズム評価

Hook S.E., Osborn H.L., Spadaro D.A., and Simpson S.L., 2014, Assessing mechanisms of toxicant response in the amphipod Melita plumulosa through transcriptomic profiling, Aquatic Toxicol., 146, 247-257.

汽水産ヨコエビの遺伝子発現をマイクロアレイで解析した論文。銅・亜鉛などを個別にスパイクした底質にヨコエビを48時間曝露させ、生存個体の発現変動を調べてます。ただ曝露濃度は物質ごとに違っていて、「銅>亜鉛>ニッケル」の順に毒性影響強い。

キチナーゼやcuticle proteinは銅・亜鉛・ニッケルのいずれによっても発現低下。同様にecdysteroid-regulated proteinの発現も、銅・ニッケルによって低下。キチナーゼはcrude oilとdiesel oil以外の全ての系(ピレスロイド系殺虫剤など)で発現低下しています。

 

 

カドミウムはエクジステロイド含量とキチナーゼ・NAG活性を減少させることで淡水カニの脱皮をさまたげる

Luo J., Pei S., Jing W., Zou E., and Wang L., 2015, Cadmium inhibits molting of the freshwater crab Sinopotamon henanense by reducing the hemolymph ecdysteroid content and the activities of chitinase and N-acetyl-β-glucosaminidase in the epidermis, Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 169, 1-6.

カニの眼柄(eyestalk)を除去してカドミウム曝露。カニやエビの眼柄にはX器官という脱皮抑制ホルモン(MIH)を合成する部位があるため、眼柄を切除すると脱皮を誘導するエクジステロイド(ecdysteroid)の分泌が促進されるそうです。

そんでこの論文では、眼柄除去した個体にカドミウムを曝露させると、脱皮にかかわるecdysoneやキチナーゼ等の体内濃度が減少したことを確認してます。カドミウムの濃度が7.25 mg/L~29 mg/Lと高めですが、LC50は232 mg/Lともっと高め。

甲殻類の脱皮とホルモンとの関連は、総説読んでもうちょい勉強しよう。

 

(追記 2017.03.21)

カドミウムによるカニの脱皮阻害

Rodriguez Moreno P.A., Medesani D.A., and Rodrıguez E.M., 2003, Inhibition of molting by cadmium in the crab Chasmagnathus granulata (Decapoda Brachyura), Aquat. Toxicol., 64 (2), 155-164.

上と同じくカニの眼柄を除去してCdに曝露させた研究。上の研究より詳しくて面白い。Cd濃度を増加させると、脱皮しない割合が増えます。そのメカニズムを探るために、甲皮中のCa濃度と血リンパ中のecdysteroidレベルを測定しています。抜け殻中のCa濃度は、Cd曝露によって統計的に有意には変化せず、ecdysteroid濃度も同様でした。Ecdysteroid合成が始まる前の成長段階で曝露されないと、脱皮への影響は生じなかったという結果も。

 

 

 

(追記 2017.03.06)

「オオミジンコにおける亜鉛摂食曝露の分子レベル・高次レベルでの影響

De Schamphelaere K.A.C., Vandenbrouck T., Muyssen B.T.A., Soetaert A., Blust R., De Coen W., and Janssen C.R., 2008, Integration of molecular with higher-level effects of dietary zinc exposure in Daphnia magna, Comp. Biochem. Physiol. D: Genomic. Proteomic., 3 (4), 307-314.

亜鉛汚染藻類をオオミジンコに食べさせて、遺伝子発現や産仔数を調べた論文。

ユニークなのが、脱皮時期・脱皮率のモニタリングをしてる点です。亜鉛曝露の影響が出たのは2回目(3日後)と4回目(6日後)のみで、他の脱皮には影響していない。

亜鉛曝露によってVitellogeninの発現は変動していなくて、影響を受けたのはcuticle metabolism・chitin bindingとミトコンドリア系。ただ影響を受けた時期が違っていて、表皮関連のものは6日後、ミトコンドリア系は13日以降。

Discussionに "Despite this incereasing evidence that metals can also interfere with molting in crustaceans, it remains unclear whether or not this occurs through similar molecular mechanisms as for organic chemicals (e.g., binding to EcR receptor)."との記述あり。

 

論文のメモ: NGSでミトコンドリアDNAの全長解析

D2のWさん関係で、環境DNAに最近興味あり。

 

「古腹足類のミトコンドリアゲノム全長配列

Williams S.T., Foster P.G., and Littlewood D.T.J., 2014, The complete mitochondrial genome of a turbinid vetigastropod from MiSeq Illumina sequencing of genomic DNA and steps towards a resolved gastropod phylogeny, Gene, 533 (1), 38-47.

ミトコンドリアDNAは全長16~18kbほどなので、NGSを用いればde novoでも比較的容易に全長解析できるんですね。この論文では150bpペアエンドのMiSeqで4.1Mリード読んでます。

核・ミトコンドリアを一緒くたにしてではなく、ミトコンドリアのみ抽出してます。抽出法は下の論文から。

 

Tamura K. and Aotsuka T., 1988, Rapid isolation method of animal mitochondrial DNA by the alkaline lysis procedure, Biochem. Genetics, 26 (11-12), 815-819.

 

Wさんの研究も、いっそ近縁種含めてミトコンドリアDNAを全長解析すれば、より確実で発展性のあるものにできそう。